您好, 访客   登录/注册

生防菌复配对烟草黑胫病的防治效果研究

来源:用户上传      作者:

  摘  要:为解决单一生防菌防效不稳定问题,通过平板对峙试验、相容试验、盆栽试验从6株生防菌中筛选对烟草疫霉菌(Phytophthora parasitica var. nicotianae)具有较高拮抗活性的复配菌株组合;利用分子生物学方法对各菌株的16S rRNA和gyrA基因进行系统进化分析,鉴定各菌株分类地位;并采用轮换因子法筛选各菌株的最适发酵培养基。结果表明,GY1、GY10和GY12发酵后混合施用对烟草黑胫病的防治效果最好,平板抑菌率达到86.9%,盆栽防效为74.53%,比GY1、GY10、GY12单独处理分别提高15.34%、27.42%和44.94%;分子鉴定表明,3株菌分别为贝莱斯芽孢杆菌(Bacillus velezensis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和枯草芽孢杆菌(Bacillus subtilis);并筛选得到了GY1、GY10、GY12的最适发酵培养基,发酵24 h后生物量相较于基础培养基分别增加了75.12%,92.31%和194.55%。
  关键词:烟草黑胫病;芽孢杆菌;生防菌复配;发酵
  Effect of Biocontrol Agents Mixture on Control of Tobacco Black Shank
  LI Miaomiao1, WANG Xiaoqiang1, WANG Dongkun1, LIU Yuande2, SUN Guangjun3, SHEN Hong3,
  AI Yongfeng3, CUI Zhiyan4, CHEN Dexin1,5*, WANG Fenglong1*
  (1. Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266000, China; 2. Linyi Tobacco Company of Shandong Province, Linyi, Shandong 276002, China; 3. Guizhou Tobacco Company, Guiyang 550004, China; 4. Shangluo Tobacco Company of Shaanxi Province, Shangluo, Shaanxi 726000, China; 5. Hainan Tobacco Company, Haikou 571199, China)
  Abstract: In order to address the problem of unstable antibacterial activity of single biocontrol bacteria, a composite strains with high antagonistic activity against Phytophthora parasitica var. nicotianae was screened from six biocontrol bacteria by compatible test, antagonist test and pot test. The taxonomic status of each strain was identified with a phylogenetic analysis of the 16S rRNA and gyrA genes of the strains, and then the optimal fermentation medium for each strain was screened with a single factor test. The co-application of GY1, GY10 and GY12 after fermentation showed the best control effect on tobacco black shank, with the plate inhibition rate reached 86.9% and he potted control effect reached 84.21%, which increased by 17.58%, 26.74% and 35.9% compared with single strains of GY1, GY10 and GY12, respectively. Molecular identification showed that the three strains were Bacillus velezensis, Bacillus amyloliquefaciens and Bacillus subtilis, respectively. The optimal fermentation mediums of GY1, GY10, and GY12 were screened, where the biomass of GY1, GY10 and GY12 increased by 75.12%, 92.31%, and 194.55%, respectively, compared with the basic medium after 24 hours of fermentation.
  Keywords: tobacco black shank; Bacillus; biocontrol agents mixture; fermentation
  煙草黑胫病是由烟草疫霉菌(Phytophthora parasitica var. nicotianae)引起的根茎类病害[1],在我国各大烟区都有发生,每年造成的损失达数亿元[2],是制约我国烟草优质安全生产的重要因素[3]。烟草黑胫病的防治措施包括农业防治、抗病品种[4]、化学防治[5]和生物防治[6]等,但抗病品种培育难,地域性强[7];化学农药长期大量使用易造成农药残留、环境污染和抗药性[8]等问题。随着绿色防控理念的提出,环境友好的高效拮抗菌成为防治烟草黑胫病的一项重要措施。   芽孢杆菌(Bacillus spp.)抗逆性强、能抑制多种病原菌生长,是农业生产中广泛应用的生防菌[9]。
  枯草芽孢杆菌、解淀粉芽孢杆菌、贝莱斯芽孢杆菌等菌株在农业生产上都发挥着重要作用。HAN等[10]发现枯草芽孢杆菌Tpb55能破坏疫霉菌的菌丝结构。WANG等[11]发现解淀粉芽孢杆菌HG01通过抑制番茄炭疽病病原体的生长和诱导抗病性达到防治炭疽病的效果。杨胜清等[12]发现贝莱斯芽孢杆菌S6的拮抗物质对番茄早疫病菌(Alternaria solani)等多种病原菌有抑制作用。
  将不同类型的生防菌组合可以增加根际土壤生物多样性和定殖量,提高防效[13]。复配方式主要有混菌发酵[14]、单独发酵后同时施用和单独发酵后间隔施用[15]等。本研究将对烟草疫霉菌有一定抑制作用的6株生防细菌进行复配,拟通过菌株相容试验,对峙试验,盆栽试验筛選得到对烟草疫霉菌抑制效果最好的复配组合,并明确菌株的分类地位,同时筛选各菌株的最适生长培养基配方。
  1  材料与方法
  1.1  试验材料
  供试烟草品种为红花大金元,供试病原为烟草疫霉菌1号生理小种,由中国农业科学院烟草研究所提供,供试生防菌GY1、GY5、GY8、GY9、GY10、GY12从贵州、四川等地烟田土壤样品中分离获得。NA、NB培养基用于细菌培养,灭菌燕麦(OA)培养基用于烟草疫霉菌培养;基础培养基(葡萄糖10 g/L、牛肉粉10 g/L、氯化钠5 g/L)用于生防菌发酵。
  1.2  试验方法
  1.2.1  生防菌种子液配置  挑取NA平板上培养24 h的生防菌接种于NB培养基,振荡培养(150 r/min,28 ℃,下同)24 h制成种子液。
  1.2.2  单菌株与烟草疫霉菌平板对峙试验  将直径8 mm的烟草疫霉菌菌饼接种至OA平板中央,距平板中心2.5 cm处对称打两个直径8 mm的孔,加入50 μL OD600为0.1的生防菌种子液,将平板转移至28 ℃恒温箱培养4 d,待对照菌落长满平板,计算抑菌率[16]。以不加生防菌平板为对照。共7个处理(表1)。3次重复。
  1.2.3  菌株相容性试验  调节生防菌种子液OD600为0.05。一株用无菌小喷壶均匀喷洒至NA平板,另一株吸取10 μL点在平板上,28 ℃恒温箱过夜培养,观察有无抑菌圈,6个菌株两两验证共30个处理,每处理3个重复。
  1.2.4  复配菌与烟草疫霉菌平板对峙试验  将菌株GY1、GY10、GY12进行复配,采用两种复配方法:①混合发酵:OD600为0.1的生防菌种子液等体积混合后按1%接种量接种至NB培养基,振荡培养24 h;②发酵后混合:各菌株按照1%接种量分别接种于NB培养基,振荡培养24 h后等比例混合。平板对峙法同1.2.2,共设置10个处理(表2),每处理3个重复。
  1.2.5  盆栽防效试验  烟苗移栽40 d后每株灌根OD600为0.3的种子液或复配菌液20 mL,5 d后接种烟草疫霉菌[17],调查发病情况(参照标准GB/T23222—2008)。共设置16个处理(表3),每处理30株。其中CK(空白对照)为清水,20 mL灌根;甲霜锰锌为72%可湿性粉剂稀释5000倍作为化学药剂对照,20 mL灌根。
  1.2.6  菌株鉴定  细菌DNA提取参照全式金细菌DNA提取试剂盒方法,采用原核生物16S rRNA通用引物(27F/1492R)和gyrA引物(42F/1066R)[18]进行目的基因的扩增和序列测定。测序结果在NCBI的GenBank数据库中进行比对,通过MEGA 7用邻接法构建系统发育树。
  1.2.7  生长曲线  将OD600为0.1的种子液按1%的接种量接种于NB培养液,振荡培养,每2小时测定1次菌液OD600,测定至48 h。
  1.2.8  筛选菌株最适生长培养基  备选碳源有葡萄糖、麦芽糖、果糖、甘露醇、糊精、玉米粉、麸皮;氮源有酵母粉、牛肉粉、豆饼粉、蛋白胨;无机盐有MgSO4?7H2O、KH2PO4、CaCO3、NaCl。采用轮换因子法[19]筛选培养基,碳源、氮源、无机盐含量分别为10、10和5 g/L,振荡培养24 h后采用平板计数法统计菌体数量。
  1.2.9  数据处理  采用Excel 2016进行数据整理及作图,DPS 3.01进行统计分析,Duncan新复极差法进行差异显著性分析。
  2  结  果
  2.1  确定复配组合
  2.1.1  单菌株与烟草疫霉菌平板对峙试验  生防菌GY1、GY10、GY12对烟草疫霉菌的抑菌率均达到84%以上(表1),与其他处理有显著差异(p≤0.05)。
  2.1.2  菌株相容性试验  菌株GY1、GY10、GY12共同培养无抑菌圈产生;而GY5与GY1、GY10共培养有抑菌圈产生;GY8与GY1、GY9、GY10、GY12共培养均有抑菌圈产生(图1)。
  2.1.3  复配菌与烟草疫霉菌平板对峙试验  由于GY5、GY8、GY9抑菌能力弱,且菌株相容性差,因此排除,采用菌株GY1、GY10、GY12进行复配。混合发酵GY1-GY10、GY1-GY10-GY12和发酵后混合GY1-GY10、GY10-GY12、GY1-GY10-GY12平板对峙试验菌落直径均值都低于1.2 cm,抑制率达85%以上(表2)。   2.1.4  盆栽防效试验  GY1、GY10、GY12的盆栽防效(表3)分别为64.62%、58.49%和51.42%;而GY5、GY8、GY9防效都在40%以下,与平板对峙结果一致。处理GY1-GY10-GY12发酵后混合的病情指数为20.00,盆栽防效为74.53%,相较于GY1、GY10、GY12单独处理分别提高15.34%、27.42%和44.94%。病情指数及发病率显著低于对照的78.52%和93.33%。综合平板对峙试验及盆栽试验结果选择GY1-GY10-GY12发酵后混合的复配方式进行后续试验。
  2.2  菌株鉴定
  利用16S rRNA基因构建的系统发育树显示,GY1与贝莱斯芽孢杆菌NRRL B-41580聚为一簇,序列同源性为89%;GY10与解淀粉芽孢杆菌NBRC 15535聚为一簇,序列同源性为91%;GY12与枯草芽孢杆菌DSM 10及JCM 1465聚为一簇,序列同源性为99%(图2 A、B、C)。同时gyrA基因系
  统发育分析进一步表明,GY1与贝莱斯芽孢杆菌R1B序列同源性为100%;GY10与解淀粉芽孢杆菌TEB-31等序列同源性为100%;GY12与枯草芽孢杆菌NRRL BD-559等序列同源性为98%(图2 D)。因此认为GY1、GY10、GY12分别为贝莱斯芽孢杆菌、解淀粉芽孢杆菌及枯草芽孢杆菌。
  2.3  生长曲线
  GY1、GY12在20 h时到达平台期,OD600分别达到1.9和2.3,GY10在30 h时到达平台期,OD600为1.7(图3)。而GY1在28 h时OD600下降,推测可能与培养基中养分消耗过度,菌体沉淀等有关。
  2.4  菌株最适生长培养基
  GY1在以玉米粉为碳源时生物量最高,菌体量达8.37×108 cfu/mL,与其他处理差异显著(p≤0.05);GY10在以玉米粉做为碳源时生物量最高,菌体量达3.8×108 cfu/mL;GY12同样在以玉米粉做为碳源时生物量最高,菌体量达4.27×108 cfu/mL,与其他处理均差异显著(p≤0.05)(图4)。综合考虑发酵效率及成本后将玉米粉作为GY1、GY10、GY12的最佳生长碳源。
  GY1在以酵母粉做为氮源时生物量最高,菌体量达6.6×108 cfu/mL,与其他处理差异显著(p≤0.05);GY10在以蛋白胨做为氮源时菌体量最高,
  菌体量达5.8×108 cfu/mL;GY12在以酵母粉做为氮源时生物量最高,菌体量达6.4×108 cfu/mL(图5)。综合考虑发酵效率及成本后将酵母粉、蛋白胨、酵母粉分别作为GY1、GY10、GY12的最佳生长氮源。
  GY1在KH2PO4做为无机盐时生物量最高,菌体量达7.53×108 cfu/mL;GY10在以CaCO3做为无机盐时生物量最高,菌体量达7.5×108 cfu/mL;GY12在以CaCO3做无机盐时生物量最高,菌体量达8.1×108 cfu/mL(图6)。综合考虑发酵效率及成本后将KH2PO4、CaCO3、CaCO3做为GY1、GY10、GY12的最佳生长无机盐。
  因此确定3菌株的最适发酵培养基分别是GY1:玉米粉、酵母粉、KH2PO4;GY10:玉米粉、蛋白胨、CaCO3;GY12:玉米粉、酵母粉、CaCO3。
  3  讨  论
  芽孢杆菌在自然界分布广泛,由于其可以产生芽孢,具有较强的抗逆性,且很多菌株具有促进植物生长、防治植物病害的功能,因此在农业生产中
  被广泛应用。芽孢杆菌促进植物生长主要是通过生物固氮、促进植物对营养元素的吸收、合成分泌植物生长调节物质、释放挥发性物质等方式进行[20-21]。除了对植物生长的促进作用,芽孢杆菌还被广泛用于植物病害的生物防治,其中枯草芽孢杆菌是生产上应用最为广泛的一类芽孢杆菌[22],此外解淀粉芽孢杆菌[23]、多粘类芽孢杆菌[24]、短小芽孢杆菌[25]、贝莱斯芽孢杆菌[26]等也被广泛应用。
  芽孢杆菌在自然环境中具有抗逆性强、种群丰富、抗菌效果显著等明显优势[27],在植物病害的防治方面具有非常好的前景,但是目前对芽孢杆菌的研究主要集中在单个菌株,对多菌株共同开展的研究较少,在一定程度上限制了该类菌株的应用。尤其是在自然环境条件下单个菌株往往存在防效不稳定、防治靶标过于单一等问题,而多菌株复配可以有效的解决单一菌株存在的问题。张良等[28]发现两株生防菌复配对烟草黑胫病的防效达69.3%,明显高于单一菌株。喻会平等[29]将枯草芽孢杆菌B41和恶臭假单胞菌(Pseudomonas putida)B57复配,对烟草黑胫病的盆栽试验防效为75.72%,大田试验防效为67.99%,抑菌效果明显高于单一菌株。本研究采用平板对峙法测定6株生防菌对烟草黑胫病的拮抗作用,并将防效好的生防菌株复配,发现贝莱斯芽孢杆菌GY1、解淀粉芽孢杆菌GY10、枯草芽孢杆菌GY12对烟草疫霉菌的平板抑制率均达84%以上,且3菌株相容性好,无拮抗作用,适合复配。本研究中,复配菌GY1-GY10-GY12发酵后混合施用对烟草疫霉菌的平板抑菌率达到86.9%,比GY1、GY10、GY12单独处理略有提高(分别提高2.3%、2.7%和1%),但是盆栽防效显著高于单独处理,复配菌株的防效达到74.53%,比GY1、GY10、GY12单独处理分别提高15.34%、27.42%和44.94%。GY1-GY10-GY12发酵后混合对烟草疫霉菌的平板抑制效果影響不大,但明显提高了盆栽防效,原因可能与单一菌株土壤定殖能力差,三者共同施用增加了各菌株在烟草根际的定殖量和根际土壤微生物多样性有关;另外复配可以将三菌株优势互补,从而提高防效。   微生物发酵过程中菌体的生物量及抗菌产物的分泌受培养基成分影响较大[30],筛选菌株最适生长培养基对提高发酵效率有重要意义。张红艳等[31]优化地衣芽孢杆菌(Bacillus licheniformis)最佳发酵培养基组分,结果表明最佳配比的发酵培养基可提高发酵液的菌体浓度和芽孢率。张志焱等[32]通过单因子试验筛选出最适培养基,优化后抗菌肽的效价提高到了4.25×104 U/mL,是优化前的3.51倍。本试验首先通过绘制生长曲线得到了GY1、GY10、GY12的增殖趋势,再通过轮换因子法筛选3菌株的最适生长培养基,与直接筛选培养基相比提高了效率。采用筛选后的培养基发酵相较于基础培养基生物量(4.3×108、3.9×108、2.75×108 cfu/mL)分别提高75.12%,92.31%和194.55%。结果表明不同培养基成分对3种芽孢杆菌的生物量具有很大影响,筛选最适发酵培养基有助于提高发酵效率;同时本试验以玉米粉作为碳源,有效降低了发酵成本,该结果可以为菌株的规模化发酵提供借鉴。
  4  结  论
  结果表明,GY1-GY10-GY12发酵后混合是防治烟草黑胫病的高效复配组合,对烟草疫霉菌的平板抑菌率为86.9%;盆栽防效為74.53%;GY1、GY10、GY12分别为贝莱斯芽孢杆菌(B. velezensis)、解淀粉芽孢杆菌(B. amyloliquefaciens)和枯草芽孢杆菌(B. subtilis)。三菌株的最适生长培养基分别为GY1:玉米粉、酵母粉、KH2PO4;GY10:玉米粉、蛋白胨、CaCO3;GY12:玉米粉、酵母粉、CaCO3。
  参考文献
  [1] LEE H H, KIM J S, HOANG Q T N, et al. Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae[J]. European journal of plant pathology, 2018, 151(3): 811-823.
  [2] REN X L, ZHANG N, CAO M H, et al. Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5[J]. Biology & Fertility of Soils, 2012, 48(6): 613-620.
  [3] 郭璇,闫杏杏,蒋彩虹,等.雪茄烟Beinhart1000-1对黑胫病0号生理小种的抗性遗传分析[J]. 中国烟草科学,2017,38(2):56-62.
  GUO X, YAN X X, JIANG C H, et al. Genetic analysis of beinhart1000-1 resistance to black shank in tobacco [J]. Chinese Tobacco Science, 2017, 38 (2): 56-62.
  [4] 张玉,刘杨,王元英,等. 烤烟新品种中川208的选育及特征特性[J]. 中国烟草科学,2019,40(5):1-7.
  ZHANG Y, LIU Y, WANG Y Y, et al. Breeding and characterization of a new flue-cured tobacco variety Zhongchuan208 [J]. Chinese Tobacco Science, 2019, 40(5): 1-7.
  [5] 任晓芬,亓文哲,程星凯,等. 氟菌·霜霉威对烟草黑胫病的防效及其对烟株生长的影响[J]. 中国烟草学报,2018,24(4):129-134.
  REN X F, QI W Z, CHENG X K, et al. The control efficacy of fluopicolide·propamocarb hydrochloride to tobacco black shank and its effect on tobacco growth[J]. Acta Tabacaria Sinica, 2018, 24(4): 129-134.
  [6] 彭阁,姜乾坤,谭军,等. 烟草黑胫病拮抗真菌的筛选及活性评价[J]. 中国烟草科学,2018,39(1):77-84.
  PENG G, JIANG Q K, TAN J, et al. Selection and field evaluation of antagonistic fungi against tobacco black shank [J]. Chinese Tobacco Science, 2018, 39(1): 77-84.
  [7] 罗经仁,李宏光,李云霞,等. 烤烟新品种湘烟6号的选育及其特征特性[J]. 中国烟草科学,2019,40(4):1-6,13.
  LUO J R, LI H G, LI Y X, et al. Breeding and characterization of a new flue-cured tobacco variety Xiangyan 6 [J]. Chinese Tobacco Science, 2019, 40(4): 1-6,13.
  [8] 江泽军,张鹏,李永飞,等. 分散固相萃取-高效液相色谱-串联质谱法测定水稻和土壤中的福美双与甲霜灵残留[J]. 农药学学报,2015,17(3):313-320.   JIANG Z J, ZHANG P, LI Y F, et al. Simultaneous determination of thiram and metalaxyl residues in rice and soil by dispersive solid phase extraction and high performance liquid chromatography-tandem [J]. Chinese Journal of Pesticide Science, 2015, 17(3): 313-320.
  [9] SAJITHA K L, DEV S A, FLORENCE E J M. Biocontrol potential of Bacillus subtilis B1 against sapstain fungus in rubber wood[J]. European Journal of Plant Pathology, 2018, 150(1): 237-244.
  [10] HAN T, YOU C, ZHANG L, et al. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank[J]. Biocontrol, 2016, 61(2): 195-205.
  [11] WANG X L, YUAN Z X, SHI Y Q, et al. Bacillus amyloliquefaciens HG01 induces resistance in loquats against anthracnose rot caused by colletotrichum acutatum[J]. Postharvest Biology and Technology, 2020, 160: 111034.
  [12] 楊胜清,张帆,马贵龙.贝莱斯芽孢杆菌S6拮抗物质分离纯化及抑菌机理[J]. 农药,2017,56(9):645-648,660.
  YANG S Q, ZHANG F, MA G L. Purification and inhibitive mechanism of antagonist substances from Bacillus velezensis S6 strain [J]. Agrochemicals, 2017, 56(9): 645-648, 660.
  [13] 孙立广,张洪春,赵秀云,等. 烟草青枯病拮抗菌在有机肥中的定殖效率及田间防治效果[J]. 中国烟草科学,2016,37(4):48-53.
  SUN L G, ZHANG H C, ZHAO X Y, et al. Colonization rate of several antagonistic bacteria against tobacco bacterial wilt in organic fertilizers and control efficacy in field [J]. Chinese Tobacco Science, 2016, 37(4): 48-53.
  [14] 郑渊洁,郝建宇,侯红萍.黑曲霉产纤维素酶混合发酵条件的研究[J]. 中国酿造,2016,35(12):118-122.
  ZHENG Y J, HAO J Y, HOU H P. Multi-strains fermentation condition of Aspergillus niger for cellulase production[J]. China Brewing, 2016, 35(12): 118-122.
  [15] 蓝星杰,甘良,刘继红,等.SC11生防菌剂及其不同复配对西瓜和茄子防病促生作用[J]. 西北农业学报,2015,24(12):117-124.
  LAN X J, GAN L, LIU J H, et al. Effects of SC11 combined with other biocontrol agents on disease control and growth promotion in watermelon and eggplant[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(12): 117-124.
  [16] 翟世玉,殷辉,周建波,等. 枯草芽胞杆菌发酵液对苹果树腐烂病的防治效果[J]. 植物保护,2019,45(5):226-231,274.
  ZHAI S Y, YIN H, ZHOU J B, et al. Control efficacy of Bacillus subtilis fermentation broth against apple valsa canker[J]. Plant Protection, 2019, 45(5): 226-231, 274.
  [17] 向世鹏,胡日生,周向平,等. 烟草种质资源黑胫病抗性鉴定及亲缘关系SSR分析[J]. 华北农学报,2016,31(S1):156-161.
  XIANG S P, HU R S, ZHOU X P, et al. Identification of resistance to black shank disease of tobacco gerplasm resources and analysis of genetic relationship of SSR[J] . North China Agricultural Journal, 2016, 31 (S1): 156-161.   [18] 王恒煦,徐伟慧,杨友财,等. 一株Fusarium oxysporum f. sp. niveum拮抗菌的筛选、鉴定及其抑菌特性[J]. 浙江农业学报,2019,31(10):1671-1680.
  WANG H X, XU W H, YANG Y C, et al. Screening, identification and characteristics of an antagonistic strain against Fusarium oxysporum f.sp. niveum[J]. Acta Agriculturae Zhejiangensis, 2019, 31 (10): 1671-1680.
  [19] 关小红,张成省,孔凡玉,等.烟草赤星病拮抗细菌Tpb55摇瓶发酵条件的筛选[J]. 中国烟草科学,2009,30(l):54-57.
  GUAN X H, ZHANG C S, KONG F Y, et al. Fermentation conditions of antagonistic strain Tpb55 of Bacillus subtilis against tobacco brown spot[J]. Chinese Tobacco Science, 2009, 30(l): 54-57.
  [20] ZHANG F, LI X L, ZHU S J, et al. Biocontrol potential of Paenibacillus polymyxa against Verticillium dahliae infecting cotton plants[J]. Biological Control, 2018, 127: 70-77.
  [21] JANGIR M, PATHAK R, SHARMA S, et al. Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici[J]. Biological Control, 2018, 123: 60-70.
  [22] GUO S, ZHANG J W, DONG L H, et al. Fengycin produced by Bacillus subtilis NCD-2 is involved in suppression of clubroot on Chinese cabbage[J]. Biological Control, 2019, 136:104001.
  [23] CUI W, HE P, MUNIR S, et al. Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601-Y2 for biocontrol of southern corn leaf blight[J]. Biological Control , 2019, 139: 104080.
  [24] SANTIAGO R, HUILINIR C, COTTET L, et al. Microbiological characterization for a new wild strain of Paenibacillus polymyxa with antifungal activity against Botrytis cinerea[J]. Biological Control, 2016, 103: 251-260.
  [25] REN J H, LI H, WANG Y F, et al. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker[J]. Biological Control, 2013, 67(3): 421-430.
  [26] CUI L, YANG C, WEI L, et al. Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab[J]. Biological Control, 2020, 141: 104156.
  [27] PALAZZINI J M, DUNLAP C A, BOWMAN M J, et al. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles[J]. Microbiological research, 2016, 192: 30-36.
  [28] 張良,刘好宝,顾金刚,等.长柄木霉和泾阳链霉菌复配对烟苗生长及其抗病性的影响[J]. 应用生态学报,2013,24(10):43-45.
  ZHANG L, LIU H B, GU J G, et al. Effects of Trichoderma longbrachitum and Streptomyces jingyangensis combination on the growth and disease resistance of tobacco seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(10): 43-45.   [29] 喻会平,罗定棋,代园凤,等.烟草黑胫病拮抗细菌复合菌株的筛选与防治效果评价[J]. 中国农学通报,2015,31(8):102-107.
  YU H P, LUO D Q, DAI Y F, et al. Effects of compound biocontrol strains against tobacco black shank disease[J]. Chinese Agricultural Science Bulletin, 2015, 31(8): 102-107.
  [30] 胡俊.拮抗性芽孢杆菌的筛选及其抗菌肽的分级和性质分析[D]. 合肥:安徽工程大学,2017.
  HU J. Screening of antagonistic Bacillus and its c antimicrobial peptides’ purification and analysis[D]. Hefei: Anhui University of Engineering, 2017.
  [31] 张红艳,李忠玲,张强,等.地衣芽孢杆菌MYS68的鉴定及发酵培养基优化[J]. 粮食与饲料工业,2018(2):50-53.
  ZHANG H Y, LI Z L, ZHANG Q, et al. Identification and optimization of fermentation medium for Bacillus licheniformis MYS68[J]. Cereal & Feed Industry, 2018(2): 50-53.
  [32] 张志焱,赵倩,于佳民,等. 一株枯草芽孢杆菌产抗菌肽培养基筛选及发酵工艺优化的研究[J]. 中国畜牧兽医,2019,46(4):1217-1226.
  ZHANG Z Y, ZHAO Q, YU J M, et al. Selection of culture medium and optimization of fermention conditions for Bacillus subtilis producing antimicrobial peptides[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(4): 1217-1226.
  基金項目:中华人民共和国科学技术部项目“烟草化学农药减施增效途径及技术研究”(2018YFD0201104-02);山东省自然科学基金“吡咯伯克霍尔德氏菌Lyc2抗细菌相关基因的鉴定与功能分析”(ZR2018BC037);中国烟草总公司贵州省公司科技项目“贵州烟草叶斑类病害成灾规律与绿色防控技术研究示范”(201920)
  作者简介:李苗苗(1993-),女,在读硕士,主要从事植物病害防治研究。E-mail:1305047786@qq.com
  *通信作者,E-mail:chendxtob@126.com;wangfenglong@caas.cn
  收稿日期:2019-08-29                   修回日期:2019-12-23
转载注明来源:https://www.xzbu.com/1/view-15223393.htm