您好, 访客   登录/注册

重型轨道焊接工艺指导

来源:用户上传      作者:

  摘 要:化肥厂包装储运系统中耙料机常配有两条重型轨道,材质为U71Mn,轨道接头处采用手工电弧焊方法连接。轨道焊接工作是耙料机安装工作中的一项重要工作,其焊接质量的好坏直接关系到整个包装储运系统的安全运行。本文论述了U71Mn钢的可焊性和应采取的焊接工艺,以及对焊前预热和焊后消除应力热处理的控制,并通过实体工程的验证,总结了重型轨道现场焊接经验、工艺措施及热处理方案,对今后类似工程安装工作具有较大的指导意义。
  关键词:重型轨道;U71Mn;焊接工艺;热处理
  1.前言
  金瓯化肥厂散装库内安装的耙料机共有两条轨道,其长度为365m,轨距为48m,直线度偏差为10mm,同跨两平行轨道标高相对差小于5mm,施工难点是两侧轨道的跨距、直线度、全长标高等安装要求高。采用标准长度为12m的重型钢轨,为保证耙料机安全运行,采用焊接方式连接,两侧共60个接头。本工程轨道接头全部采用手工电弧焊方法焊接,焊后将焊缝磨平,使整排轨道最终成为一个整体,可有效减少行进过程中的冲击和振动,提高耙料机的使用寿命和运行的安全性。
  以QU100型号钢轨为例,材质为U71Mn钢,其基本尺寸见表1:
  表1 QU100型钢轨尺寸
  型号 截面尺寸(mm)
  轨高 顶宽 顶下宽 底宽 腰厚
  QU100 150 100 108 150 38
  由于U71Mn钢为高碳中锰钢,含碳量很高,其可焊性很差,焊接难度较大。如果在焊接过程中未控制好各种焊接参数,未实施有效的热处理,则很容易在焊口处出现裂纹。根据钢轨生产厂家提供的焊接方案,结合现场文件编制焊接预规程,并进行一系列的焊接工艺试验,最终可成功避免焊接裂纹的产生及控制焊接挠曲变形,完成轨道的整体焊接工作。
  2.U71Mn钢焊接性分析
  依据钢轨生产厂商提供的质量证明书,重型钢轨型号为QU100、材质为U71Mn,其主要化学成分见表2:
  表2 U71Mn钢的主要化学成分
  材质 主要化学成分%
  C Si Mn S P
  U71Mn 0.71 0.28 1.22 0.008 0.012
  该材质力学性能为:抗拉强度σb≥885Mpa,屈服强度σs≥450Mpa,伸长率A=11%。
  从表2中C、Mn元素含量可知U71Mn钢为高碳中锰钢。Mn元素含量高,钢的强度和冲击韧性也高。中锰钢较耐磨,含碳量偏高,强度及硬度也高,韧性差,焊接冷却时容易得到马氏体组织。
  根据碳当量(Ceq)法计算U71Mn钢的碳当量为:Ceq=C+Mn/6+Si/24+Cr/5+Mo/4+V/14+Ni/40=0.93%
  一般碳当量Ceq为0.4%-0.5%时,钢即不具备良好的可焊性。U71Mn钢的碳当量高达0.93%,淬硬倾向大,在焊接过程易产生马氏体组织,很容易形成冷裂纹。焊材中S、P等杂质控制不当易在未填满的弧坑处产生热裂纹。每根轨道长度达12m,焊接过程中产生的挠曲变形引起的内应力会影响焊缝的受力状态,长期受力可能导致疲劳裂纹。
  通过上述分析可知,U71Mn钢的可焊性能较差,在工艺试验和现场实践时必须采用合理的焊接工艺和热处理方案来改善钢的焊接性,获得质量符合要求的焊接接头,以保证轨道的使用性能。
  3.首次焊接工艺试验
  进行U71Mn钢焊接工艺试验时,采用两个12m长的钢轨进行,以保证焊接接头与现场有一致的拘束条件,同时也方便测量焊接过程中的变形情况。
  依据钢轨生产厂商提供的焊接方案,结合现场使用的焊接工艺评定文件,编制出轨道焊接的预规程,按照预规程进行工艺试验,以验证该工艺在现场施工的可行性。该焊接工艺要点如下:
  (1)焊条选型:AWS E11015-G,φ4.0
  U71Mn属于低合金钢,可根据强度匹配原则选取焊接材料。此处的焊缝对钢轨主要起连接作用,可按低强匹配原则来选焊材,本工艺试验选取AWS A5.5 E11015-G φ4.0mm焊条。该焊条化学成分见表3:
  表3 E11015-G主要化学成分
  焊条 化学成分%
  Mn Si P S Ni Cr Mo
  E11015-G ≥1.0 ≥0.8 ≤0.03 ≤0.03 ≥0.5 ≥0.3 ≥0.2
  该焊条力学性能为:抗拉强度σb≥760Mpa,屈服强度σs≥670Mpa,伸长率A≥15%,常温冲击值为60J。
  (2)焊接前将轨道焊接区两侧至少20mm处打磨出金属光泽。对轨道端面进行液体渗透检测,以确保端面无裂纹。轨道组对型式为I型坡口,用于组对的两轨道端面间隙为15-18mm。底部使用钢垫板(材质Q235,厚度为10mm)作为永久垫板,焊完后保留在接头底部。
  考虑焊接变形因素,采用反变形方法来抵消焊接过程中轨道的变形。焊接前用附加垫板把轨道接头处垫起一定的高度以保证在焊完后轨道平直。轨道组对示意图见图1。
  图1 轨道组对示意图 图2 铜垫板模具
  (3)焊接前对轨道组对接头进行预热,预热采用普通的气焊喷嘴围绕接头附近反复进行加热,应尽可能使钢轨全截面加热均匀,预热温度为300-350℃,预热范围为焊缝中心线两侧各200mm,使用红外线测温仪测量预热温度。电极接法为直流反接法,焊接方法为手工电弧焊。焊条使用前按说明书的要求烘干、保温,烘干温度为350℃-400℃,保温时间为1小时。(4)第一阶段的焊接,在轨道端面的一侧用直径φ4.0的焊条焊接首条焊缝,焊接电流为130A左右,然后在另一侧焊第二条焊缝,来回往复焊接,采用对称的焊接方式来焊接轨道底部。(5)第二阶段的焊接,在轨道接头两侧面先装上铜垫板模具,见图2,用自制夹具轧牢,并调整垫板与轨道的间隙到4-6mm。用直径φ4.0的焊条在第一阶段基础上施焊,焊接电流调整为140A左右。焊接时在中间引弧并不断在接头中运条,使一些焊渣从轨道和垫板之间的间隙流出,使焊缝表面光滑无缺口。(6)第三阶段焊接前,保持第二阶段焊接时轨道接头两侧面的铜垫板,在上层基础上进行堆焊,焊接电流为150A左右。完成整个接头处的焊接后,堆焊高度高于轨道面2mm左右。   每完成一道焊缝,必须把焊渣清除干净后才能继续施焊。焊接过程中要严格控制层间温度,与预热温度的范围相同。每一接头尽量一次性焊接完成,不能断断续续。如被迫中断较长时间,再次焊接前要用火焰重新对接头部分预热。(7)轨道焊接及修补完工后,立即用火焰把焊缝接头及附近区域(焊缝中心线两侧各150mm左右)加热至550-600℃进行焊后消除应力热处理,使用红外线测温仪测量接头温度。达到规定的温度后继续用火焰维持温度,时间为20分钟,然后用保温棉包裹进行保温,使温度缓慢冷却。(8)轨道接头冷却到室温后,对轨道接头的顶面及两侧面的焊缝进行打磨,一般要求焊缝不允许低于母材表面,轨道接头处高低差应小于1mm,且平滑过渡。
  4.缺陷分析及技术措施
  按照预规程进行轨道焊接工艺试验后,对轨道外观尺寸进行测量,组对钢轨顶面收缩5-6mm,可适当增大组对间隙;轴向偏差1-2mm,符合要求;接头有点向下弯曲,应重新调整附加垫板抽出时机。
  对焊缝表面做液体渗透检测,在轨腰中部两侧焊缝熔合线处发现了竖向微裂纹,对裂纹处进行打磨,左侧打磨5mm深时消除,右侧打磨4mm深时消除,可判断为非贯穿性裂纹。
  经分析,产生裂纹的原因如下:
  (1)轨道焊缝的I型结构决定了其接头拘束应力较大,不均匀的加热和冷却使焊接过程中产生的热应力及焊接接头组织转变叠加在接头上,容易导致裂纹。(2)室温下U71Mn钢焊缝组织为高碳马氏体。高碳片状马氏体具有高强度、高硬度的特点,其组织中存在大量显微裂纹,因而在应力、扩散氢等作用下极易形成冷裂纹。(3)焊前预热温度偏低,焊后采用火焰加热方式进行消除应力热处理方式不当。母材和焊缝热膨胀系数不同,温度梯度较大容易导致熔合线处开裂。
  针对以上产生裂纹的原因,经研究讨论后,制定以下措施:
  (1)采取合理的组对方式,调整反变形的角度;采用正确的焊接顺序,不准刚性固定、强行组对,以改善接头的应力状况。(2)提高预热温度至350-400℃,提高焊后消除应力热处理温度至620-650℃。改变热处理方式,采用热处理设备提供恒定温度进行热处理,保温时间延长至30分钟,缓冷以利于焊缝中氢的扩散,改善接头应力状况。(3)严格控制焊条的烘焙、保温,减少氢含量。(4)滞后抽出底部附加垫板时机,待第二阶段完全焊完时再抽出底部铜垫板,以保证接头的变形符合要求。
  5.二次焊接工艺试验
  通过对首次焊接工艺试验的分析和总结,重新制定轨道焊接工艺预规程,并进行第二次焊接工艺试验。此次试验与首次试验相比有以下不同:
  (1)焊前预热温度提高至350-400℃,在焊接接头附近的轨道上缠绕保温棉用以保持预热温度。加热过程中使用红外线测温仪控制升温速度≤200℃/h,减小温度梯度。(2)按照首次焊接工艺试验的步骤对轨道接头施焊,提高层间温度至350-400℃。每焊完一层都要用红外线测温仪温度接头及附近区域的温度,如低于要求值,则在焊接下一层前用火焰加热接头区域,以保证层间温度符合要求。(3)改变轨腰两侧铜垫板的形状,制作多对铜垫板。第二阶段焊接时,使用小弧度的铜垫板,以保证焊条在轨道间隙内回摆。焊接到中间位置时,更换大弧度的铜垫板,以适应新高度的焊接。逐层清渣,仔细检查无缺陷后方可进行下一层的焊接,确保焊缝表面光滑无缺口。(4)完成第二阶段的焊接后取掉底部的附加垫板,继续焊接第三阶段直至完成。由于焊接变形,刚好在全部焊完后轨道变得平直。(5)轨道焊接及修补完工后,立即用热处理设备对焊缝及附近区域实施消除应力热处理,测量并记录热处理的温度,然后用保温棉包裹加热区域。温度达到620-650℃时保温30分钟,升温和降温速率控制在≤200℃/h。
  轨道接头冷却到室温后,对轨道接头的顶面及两侧面的焊缝进行打磨。第二次轨道焊接工艺试验完成后,测量轨道外观尺寸,均符合要求值。对试验接头进行液体渗透检测,未发现裂纹。48小时后对该接头进行超声波检测,未发现内部存在裂纹,至此可以确定轨道U71Mn钢的焊接工艺试验取得了成功,得到了合格的焊接接头。
  6.轨道焊接工艺应用
  在完成轨道U71Mn钢的焊接工艺试验后,把该工艺应用到了金瓯化肥厂包装储运系统中耙料机轨道的安装施工中,顺利地完成了两侧共60个轨道接头的焊接工作。经液体渗透检测,未发现裂纹及其他表面缺陷,合格率达100%。
  7.结束语
  选用恰当的焊接方法、工艺措施及热处理方案,在焊接过程中严格控制工艺要求进行预热、焊接和焊后热处理,是获得U71Mn轨道钢合格接头的关键。U71Mn钢是高碳中锰钢,其可焊性很差,容易产生裂纹。通过一系列的焊接工艺试验,得到了该钢种合适的焊接工艺方法,并成功地应用于实体工程中。希望该焊接工艺对以后同类轨道钢的焊接起到积极的借鉴作用。
转载注明来源:https://www.xzbu.com/3/view-4195411.htm