您好, 访客   登录/注册

GPS和GIS技术在精准农业监控系统中的应用研究进展

来源:用户上传      作者: 史国滨

  摘要:基于GPS和GIS的精准农业监控系统集数据采集、传输、处理、控制及定位导航于一体,可广泛应用于农业生产与科研的各个领域,主要用于环境因子,如温度、湿度、深度、光照等水肥条件的监测和设备的定位,是实施精准农业变量作业技术的基础,也是21世纪农业发展的必然趋势,着重介绍了国内外基于GPS和GIS的农业监控系统的研究水平及应用概况,旨在为实现现代精准农业的自动化、智能化发展提供参考。
  关键词:GPS;GIS;精准农业监控系统;应用
  中图分类号:S127文献标识码:A文章编号:0439-8114(2011)10-1948-03
  
  Application of GPS and GIS Technology in Monitoring System of Precision Agriculture
  SHI Guo-bin
  (Centre of Modern Education and Technology,Heilongjiang Bayi Agricultural University,Daqing 163319,Heilongjiang,China)
  
  Abstract: The monitoring system of precision agriculture based on GPS and GIS with collecting,transmitting,treatment, control and location features, could be used in production and research fields of monitoring environmental factors, such as temperature, humidity, depth, illumination and location. It is the basis of variable technologies of precision agriculture and inevitable trend of the 21st century. The research level and application general situation of monitoring system of precision agriculture based on GPS and GIS technology in domestic and foreign, it provided references for realization of the automation and intelligent development of modern precision agriculture.
  Key words: GPS; GIS; monitoring system of precision agriculture; application
  
  精准农业(Precision agriculture)是近年来国际上农业科学研究的热点领域,是人们在探索21世纪农业高新技术发展的过程中为减少农业生产中的盲目投入、节约成本增加产量、提高农资利用率、减少环境污染、阻止生态环境的进一步恶化而提出的一种新理念[1]。
  精准农业充分地利用了作物、土壤和病虫害的空间和时间变化量来进行耕作和田间管理,改变了传统的大片土地平均施用化肥的做法,保证了作物生产潜力的充分发挥,避免了过量施用农药和化肥造成的生产成本增长和污染农业生产环境,导致农产品品质和价值下降的严重后果,取得的经济和环境边际效益非常显著[2]。
  1GPS和GIS技术在精准农业中的应用概况
  1.1全球定位系统(GPS)
  GPS(Global positioning system),是随着现代科学技术的迅速发展而建立起来的新一代精密卫星定位系统。它利用地球外空间有一定分布的24颗卫星,使地面上任何一点可以同时与其中4颗卫星进行通讯,分别测量该点与卫星的距离,最后将该点的几何坐标推算出来,最高地面精度可达到厘米级。在精准农业中,现在一般基于差分GPS技术,精度为亚米级。在作业机械的顶部安装一个半球形GPS接收天线,可接收卫星定位信号并将此信号传给GPS接收机,GPS接收机将作业机械所处的经度和纬度数据通过RS-232串行接口传给机载液晶显示计算机,以此确定每一时刻机械的作业位置。
  1.2地理信息系统(GIS)
  GIS(Geographic information systems),是一种综合处理和分析空间数据的通用型技术体系。在精准农业领域中,GIS以很高的空间分辨率来管理田块基础信息,存储、分析和处理空间数据,生成作物产量以及土壤属性和病虫草害等环境因素的空间分布图,支持空间辅助决策,输出图形和地理统计数据以及田间决策处方图。
  1.3GPS和GIS技术在精准农业中的应用概况
  精准农业应用了GPS、GIS技术和智能决策、自动控制理论,将变量播种、变量施肥、变量灌溉、变量喷药和在线实时测产等技术集成为一体,有利于提高农业作业的效率,降低生产成本。目前,作业信息的采集、处理与实时通信渗透到精准农业的各个方面,如何快速、有效采集和更新影响作物生长环境的空间变量信息,成为实现精准农业的重要基础[3]。农田地块作为农业生产的基本单元,是实现作物生产规划、管理和效益评价的基本单元,实现农田地块信息实时监测和数据的快速、高效、全面的收集及分析是实现现代精准农业,提高生产率的关键技术;又可有效解决农业劳动人口减少的影响。而定位是解决实现农业机械自动移动的基础性难题和完成其他任务的前提;因此,基于GPS和GIS的精准农业监控系统集数据采集、传输、处理、控制及定位导航于一体,其主要设计思想是利用GPS接收机与掌上电脑(PDA)组成移动数据采集端,采集农田地块空间位置信息、时间信息、农田信息,通过SMS方式或者数据文件方式传输信息至监测更新中心。其中,SMS方式是基于GSM移动通讯网络,把野外采集到的数据包实时通过短消息SMS(Short message service)方式进行无线传输;数据文件方式是把采集到的地块信息就地存储为数据交换文件(文本文件或数据表文件),然后通过相应数据接口导入到监测更新服务中心[4]。通过在农业系统中实现远程信息采集与监控技术,可以把分散的农业设施连成统一的整体,因而实现农业自动化、智能化、精准化[5]。目前,各种已开发和正在研究的监控系统主要集中在农业上的环境因子,如温度、湿度、露点、光照和生产中的温度、湿度、光照、施肥、喷药等的自动化控制和网络化管理,通过监测和控制其生长条件,从而达到增加产量、改善品质、调节生长周期、提高经济效益的目的。少数监控系统还能达到预警的目的,主要是设定监控因子的上限和下限,通过无线传输技术发送给用户,达到预警的功能,或是通过专家系统等进行自动的调控[6]。
  2国内外GPS和GIS精准农业监控系统的研究
  精准农业始于发达国家,其中的主要部分是精准施肥和收割技术。随着发达国家农业生产市场化程度的提高,降低成本,提高投人产出比、发展优质高效农业的要求以及环境保护、资源利用、农业可持续发展等方面的要求,迫切需要经济效益、社会效益、生态效益同步的新型农业的出现。在精准农业概念提出前,农业监控技术已经在各国有了初步的研究和发展,国外对环境研究较早,始于20世纪70年代,先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制,后又出现了分布式控制系统。中国对于农业监控技术的研究较晚,始于20世纪80年代,但发展速度很快。刘德义等提出了基于Web的设施农业气象信息监测与预警系统,该系统提供了实时数据查看、历史数据查询、K线图显示、气象预警信息、温室气象预报、应用示范介绍、手机短信提示、实时图片显示等功能。杨万龙等[7]自主研发的滴灌施肥智能化控制系统,利用土壤水势传感器监测土壤的含水量,进行自动灌溉施肥控制,当土壤水势达到设定水势上限时,计算机自动启动系统进行施肥灌溉,当达到设定水势下限时,灌溉施肥停止,计算机自动记录该阀门灌水量,其他阀门按此灌溉施肥量依次进行,这种控制方式可实现多个阀门的无人值守灌溉施肥控制。当用户设置不当、系统出现异常情况时,计算机会及时发出声光报警,提醒用户介入处理,防止对系统或作物造成更大危害。国家农业信息化工程技术研究中心开发研制的便携式环境监测产品在设施农业生产中取得了良好的应用[8,9]。

  早在20世纪80年代,美国提出精准农业构想,其微电子技术发展推动了智能化监控技术的发展,以及作物生长模拟、栽培管理、测土配方施肥等农业专家系统成了精准农业早期技术基础。1993~1994年,美国在明尼苏达州农场进行了精准农业技术试验,用GPS指导施肥的作物产量提高30%左右,而且减少了化肥施用总量,经济效益大大提高。目前美国在谷物联合收割机、喷雾机、播种机等农业装备上已经采用卫星全球定位系统监控作业等高新技术。西欧国家在小麦、玉米的整地、播种、收获、运输等生产环节已全面实现了机械化,不少农业机械也装备了GPS系统进行精准农业作业。很多监控技术取得了很大的突破,许多国际大型农业装备厂商均推出了自己的智能产量监测仪、变量控制器产品。欧盟ISI启动了Wirelwsslnfo项目(1998~2003),期望运用GSM/GPRS/HSDCS无线通信技术,建立先进的农林管理多媒体服务系统[10]。Thysen[11]探讨了IT技术在农业领域应用的可能性和农业信息化的发展方向。Mc Kinion等[12]研究了一个卫星宽带无线接入系统,满足了棉花害虫多谱图像的高速传输和实时处理的要求,提高了配药机械变量作业的效率和有效性。Geers等[13]应用GSM无线技术开发了牲畜运输过程远程监控系统“TETRAD”。目前,荷兰、美国、日本等国在农业生产中已经基本实现了温度、湿度、光照、施肥、喷药等的自动化控制和网络化管理。
  中国精准农业发展起步较晚,但在国家“863”计划“数字农业”重大专项和地方政府的支持下,近5年在农业装备智能化、农业系统远程监控及农业信息化等方面获得了较快发展。乔晓军等[14]开发了农业设施环境数字化监控系统,以实现农业设施信息采集和处理的自动化。庞树杰等开发了基于GPS和GSM的农田信息远程采集系统;句荣辉等[15]应用GSM短消息技术实现了温室环境的实时控制,提高了系统的自动化程度。在农业资源利用方面,中国农业在精耕细作、多层次利用、生态农业等高效利用农业资源方面独树一帜。各地已总结出许多具有区域特色的耕作技术和农业模式,这些技术对提高我国土地、水、肥等资源的利用率发挥着重要作用。农业资源监控监测技术也取得了较大的发展,遥感与地理信息系统(GIS)技术也成功地应用于作物长势、种植面积、产量、灾害、水土流失等方面的监测[16]。历史经验表明,在开拓新的前沿科技应用领域,一些发展中国家和发达国家在起跑线上拉近了距离,发展中国家有可能在某些领域实现技术上的跨越[17]。
  3展望
  中国的农业正由传统的粗放型向精准化发展,如何结合中国农田实际特性,充分利用网络技术,开发出基于GPS和GIS的田间农业机械装备实时监控系统,通过分析地理信息数据,有效地进行各种耕作,提高机械作业效率,为进一步实现变量耕作提供技术支持[18]。同时在引进消化国外先进技术的基础上,研制开发具有自主知识产权、低成本的技术成果,支持精准农业关键技术与设备的专业精准农业监控系统,是中国实施精准农业中迫切需要解决的问题。因此,要重视世界前沿科技领域的研究,重视和研究GPS和GIS技术在精准农业监控系统的重要作用,对于加速像我国这样的发展中国家农业现代化进程、占领未来农业科技竞争的制高点具有十分重要的意义。
  
  参考文献:
  [1] 王熙,于玲,杜向军.精准农业液体肥变量控制技术要点[J].农机化研究,2006(11):5-7.
  [2] 李凤菊,宋治文,刘绍伟,等,监控系统在设施农业中的应用研究[J],天津农业科学,2010,16(1):127-129.
  [3] 庞树杰,杨青,李莉.基于GPS和GSM 短消息的农田信息采集系统[J].农机化研究,2004(1):1-3.
  [4] 黄兴荣,潘瑜春,汪梅. 基于GPS/GlS的农田地块监测更新系统[J].农机化研究,2006,(12):95-100.
  [5] 李明,李旭,孙松林,等.基于全方位视觉传感器的农业机械定位系统[J].农业工程学报,2010,26(2):170-175.
  [6] 汪懋华.精细农业发展与工程技术创新[J].农业工程学报,1999,15(1):1-8.
  [7] 杨万龙,刘春来,李娟.设施农业滴灌施肥智能化控制系统[J].农业科技通讯,2009(4):103-106.
  [8] 张云鹤,乔晓军.自动监控技术在设施农业生产中的应用系列(一)便携式环境监测产品在设施生产中的研究与应用(上)[J].农业工程技术(温室园艺),2008(3):14-15.
  [9] 张云鹤,乔晓军.自动监控技术在设施农业生产中的应用系列(一)便携式环境监测产品在设施生产中的研究与应用(下)[J]. 农业工程技术(温室园艺),2008(4):16-17.
  [10] KAREL C,JOSEF F,ADAM S,et al.Wireless supporting of agriculture and forestry information systems―Wireless Info [A]. In Presentation at the 4th AGILE Conference on Geographic Information Science in Brno[C]. BIOS scientific publishers Ltd.,2001.
  [11] THYSEN I. Agriculture in the information society[J]. Journal of agriculture engineering research,2000,76(3):297-303.
  [12] MC KINION J M,TURNER S B,W ILLERS J L,et al. Wireless technology and satellite Internet access for high―speed whole farm connectivity in precision agriculture[J]. Agricultural Systems,2004,81(3):201-212.
  [13] GEERS R,SAATKAMP H W,GOOSSENS K,et al. TETRAD:An on――line telematic surveillance system for animal transports[J].Computers and Electronics in Agriculture,1998,21(2):107-116.
  [14] 乔晓军,沈佐锐,陈青云,等.农业设施环境通用监控系统的设计与实现[J]. 农业工程学报,2000,16(3):77-80.
  [15] 句荣辉,沈佐锐.基于短信息的温室生态健康呼叫系统[J].农业工程学报,2004,20(3):226-268.
  [16] 潘藉,郑兰英,张凤芝,等.GPS技术在森林生态系统管理中的应用展望[J].防护林科技,2006(1):41-44.
  [17] 刘春宝, 王枫, 黄开杰. 基于GPS土壤水肥检测系统的探讨[J].黑龙江农业科学,2007 (1):30-33.
  [18] 杨青,张征,庞树杰,等.一种基于GPS和GIS农业装备田间位置的监控系统[J].农业工程学报,2004,20(4):84-87.


转载注明来源:https://www.xzbu.com/8/view-1067877.htm