粗粒土在三向卸载时的强度特性试验研究

作者:未知

  摘 要: 卸載是引起岩土材料破坏的常见工况,为了研究粗粒土在不同中主应力系数b情况下三向卸载时的强度特性,使用真三轴仪对粗粒土进行偏应力q保持300 kPa不变,球应力p不断减小的等q、等b三向等量卸载试验,分析三向卸载条件下粗粒土的强度特性,研究常用强度准则对卸载条件粗粒土的适用性。试验结果表明:在三向等量卸载条件下,粗粒土的强度参数与中主应力系数b有关;对于不同的b值,b=0时的内摩擦角φb最小,破坏应力比Mb最大;破坏应力比Mb随着b的增大而减小,且随着b的增大,减小的梯度在逐渐减小;内摩擦角φb在b值较小时随着b的增大而增大,在b值较大时随着b的增大而减小,3个方向剪切的共同影响可以解释这一变化规律;Matsuoka-Nakai强度准则、粗粒土应力不变量强度准则和Lade-Duncan强度准则这3个强度准则都能反映内摩擦角φb与b之间的这一规律,其中,Matsuoka-Nakai强度准则在b值较小时与试验结果较为接近,粗粒土应力不变量强度准则在b值较大时与试验结果较为接近;粗粒土角隅函数强度准则与等q、等b试验结果较为吻合。
  关键词: 强度准则;粗粒土;强度参数;卸载;加载
  中图分类号:TU447    文献标志码:A   文章编号:2096-6717(2020)02-0010-07
   Experimental study on the strength characteristics of coarse-grained soil under three-dimensional unloading
  Shi Weicheng1, Zhu Jungao2, Hu Xipeng3, Dai Guozhong1, Li Xiongwei1, Li Shujin1
  (1.School of Civil Engineering & Architecture, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, P.R.China;2.Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210098, P.R.China;3.CCCC Third Highway Engineering CO., LTD, Beijing 101300, P.R.China)
  Abstract:  Unloading is a common condition that causes damage to geotechnical materials.In order to investigate the strength characteristics of the coarse-grained soil under three-dimensional unloading in different cases of the coefficient of intermediate principal stress b, several three-dimensional equal unloading tests in which the spherical stress p decreases with constant b and constant deviatoric stress q (300 kPa) were performed on coarse-grained soil by using true triaxial apparatus.The strength characteristics of coarse-grained soil were analyzed and the applicability of the commonly used strength criterions was studied.The test result shows that under the condition of three dimensional equal unloading, the strength parameter of coarse-grained soil is related to the coefficient of intermediate principal stress b.When b equals to 0, the internal friction angle φb is the minimum and the failure stress ratio Mb is the maximum.The stress ratio at failure decreases with the increase of b and, as b increases the gradient decreases gradually.The internal friction angle increases with b for small b values while decreases with the increase of b for large values.This can be explained by the co-impact of the shearing in three directions.All of the three strength criterions, including the Matsuoka-Nakai criterion, the criterion expressed by stress invariants of coarse-grained soil and Lade-Duncan criterion, can response the law between φb and b.It is found that the Matsuoka-Nakai criterion is the closest to the test results for small b values while the strength criterion expressed by stress invariants of coarse-grained soil is the closest to the test results for large b values.It is also found that the corner function strength criterion of coarse-grained soil is consistent with the experimental results.   Keywords: strength criterion; coarse-grained soil; strength parameter; unloading; loading
  強度特性是土的重要力学性质,很多学者通过剪切或三轴加载试验对其进行研究。卜建清等[1]通过三轴试验研究了冻融次数、细粒含量以及围压对粗粒土强度特性的影响。Asghari等[2]对胶结砂进行了一系列三轴试验,研究其强度特性。彭凯等[3]通过大型单剪仪研究了不同泥皮成分对粗粒土 混凝土接触面强度的影响。Wang等[4]对粗粒盐碱土进行了冻融循环下的直剪试验,提出了兼有含盐量和冻融循环的经验公式。黄茂松等[5]总结了饱和黏土、砂土及粗粒土的本构强度理论研究现状及发展趋势。Aouali等[6]通过直剪试验研究了纤维加固泥砂中纤维含量对强度的影响。徐肖峰等[7]使用大型直剪仪对不同剪切速率下粗粒土的强度特性进行了试验研究。Chen等[8]对加入4种不同比例碎石的泥砂进行了三轴试验,分析了粗颗粒和细颗粒对强度和变形的影响。Zaimoglu等[9]通过一系列无侧限抗压试验、直剪试验研究了随机分布的聚丙烯纤维对细粒土强度特性的影响。Aslani等[10]通过大型直剪试验对石柱加固粘土的剪切强度进行了研究。Deganutti等[11]对颗粒材料的摩擦角进行了研究,认为摩擦角取决于颗粒的大小和形状。
  卸载是工程中常见的工况,比如水库泄水、基坑开挖等等,然而,对卸载条件下土的强度研究则相对较少,部分学者对细粒土的卸载强度进行了研究。蔡建等[12]从理论上推导了土的卸载抗剪强度指标计算方法,张玉等[13]使用真三轴仪对黄土进行了平面应变条件下的侧向卸载试验,何世秀等[14]通过对粉质黏土的卸载剪切试验整理分析,认为这种土近似符合Matsuoka-Nakai准则,王大雁等[15]研究了经K0固结后兰州冻结黄土在径向卸载状态下的应力 应变行为,认为可用主应力差渐近值与破坏比之间的关系来估算破坏强度。李加贵等[16]对黄土进行了围压减小、轴压不变的三轴侧向卸荷剪切试验,得到的强度参数低于三轴压缩试验结果。
  粗粒土在土石坝等工程中应用广泛,且经历包括加载、卸载在内的复杂工况。目前,对粗粒土强度特性的研究一般还是基于粗粒土的加载试验,在卸载尤其是不同中主应力系数情况下,三向卸载条件下的粗粒土强度特性试验研究基本未见报道,笔者使用真三轴仪对粗粒土进行等q、等b三向卸载试验,研究粗粒土在三向卸载时的强度特性。
  1 试验仪器
  试验使用的真三轴仪可单独控制3个方向的主应力σ1、σ2、σ3,如图1(a)所示。竖向采用刚性板加压,水平向分别采用水囊和复合加压块加压,如图1(b)所示。
  2 试验材料、试验方法及应力路径
  2.1 试验材料
  试验土料为双江口心墙堆石坝的粗粒土,占总重量70%的颗粒粒径介于5~10 mm之间,30%的颗粒粒径小于5 mm,最小干密度1.54 g/cm3,最大干密度1.96 g/cm3。土样分5层击实,控制干密度ρd=1.91 g/cm3,相对密度0.90,为简单起见,制样和试验时的试样都为干样。试样尺寸为120 mm×60 mm×120 mm的长方体。
  2.2 试验方法
  为研究粗粒土在三向卸载时的强度特性,进行了中主应力系数b(b=(σ2-σ3)/(σ1-σ3))分别为0、0.25、0.5、0.75、1,偏应力 q(q= [(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2]/2 )保持300 kPa不变,球应力p(p=σ1+σ2+σ3)/3)从500 kPa开始减小的等q、等b试验,直至试样破坏。
  2.3 应力路径
  等q、等b试验时,保持q和b为常数,p为变量,算出相应的3个方向主应力σ1、σ2、σ3,卸载时,3个方向主应力都以0.2 kPa/s的速度减小,图2为不同b值时实测的σ1、σ2、σ3随时间t的变化曲线。可以看出,等q、等b试验中,3个方向的主应力σ1、σ2、σ3都在不断等量减小,为三向等量卸载试验。
   3 试验结果分析
  表1和表2分别列出了等q、等b试验初始状态和破坏状态3个方向的主应力大小,表2还算出了内摩擦角φb(φb=arcsin[(σ1-σ3)/(σ1+σ3)])和破坏应力比Mb(=q/p)。比较表1和表2可以看出,破坏状态的3个方向主应力都比初始状态要小,为三向卸载。由表2可见,在三向等量卸载条件下,粗粒土的强度参数与中主应力系数b有关;对于不同的b值,b=0时的内摩擦角φb最小,破坏应力比Mb最大;随着b的增加,内摩擦角φb逐渐变大,b=0.5时内摩擦角φb达到最大,当b值继续增大时,内摩擦角φb则随着b的增大而减小,b=1时的内摩擦角比b=0时的大;破坏应力比Mb随着b的增大而减小,且随着b的增大,减小的梯度在逐渐减小。
   在三向主应力σ1、σ2、σ3(σ1≥σ2≥σ3)共同作用下,剪切强度参数可以认为受3个因素共同影响:因素1,在σ2侧向约束下σ1、σ3间的剪切作用σ1-σ3;因素2,在σ1侧向约束下σ2、σ3间的剪切作用σ2-σ3;因素3,在σ3侧向约束下σ1、σ2间的剪切作用σ1-σ2。内摩擦角φb在b值较小时随着b的增大而增大,在b值较大时随着b的增大而减小的规律可以由这3个因素的共同影响来解释。
  当b=0时,σ2=σ3,σ2-σ3=0,即在σ1侧向约束下,σ2、σ3间的剪切作用为0,“因素2”不会对试样的剪切破坏产生影响,也就是不会对剪切强度参数产生影响;σ1-σ2=σ1-σ3,“因素1”和“因素3”都是在σ3侧向约束下的剪切作用σ1-σ3。
  当b从0开始增大,但仍处于较小值时(如试验中b=0.25时),随着b的增大,σ2-σ3增大,在σ1侧向约束下,σ2、σ3间的剪切作用增大,有助于试样剪切破坏,所以,“因素2”使剪切强度参数减小,但由于σ2-σ3数值较小,这个影响也较小;随着b的增大,σ1-σ2减小,即在σ3侧向约束下,σ1、σ2间的剪切作用减小,“因素3”使剪切强度参数增大;随着b的增大,σ2增大,“因素1”的σ2侧向约束增大,使剪切强度参数增大。综合3种因素来看,在b值较小时,剪切强度参数随着b的增大而增大。   当b继续增大,σ2-σ3继续增大,“因素2”使剪切强度参数减小的影响也繼续增大;而σ1-σ2继续减小,在σ3侧向约束下,σ1、σ2间的剪切作用继续减小,“因素3”继续使剪切强度参数增大;“因素1”中的σ2侧向约束继续增大,也是使剪切强度参数增大的因素。当b增大到某一值时(如试验中b=0.5时),“因素2”使剪切强度参数减小的影响与“因素3”、“因素1”使剪切强度参数增大的影响相同时,内摩擦角达到最大值。
  当b增大到较大值时(如试验中b=0.75时),σ2-σ3增大到较大值,而σ1-σ2则减小到较小值,此时“因素2”使剪切强度参数减小的影响超过“因素3”、“因素1”使剪切强度参数增大的影响,内摩擦角较b=0.5时开始减小。
  当b=1时,σ1=σ2,σ1-σ2=0,σ2-σ3=σ1-σ3,“因素3”不会对剪切强度参数产生影响;“因素1”和“因素2”都是在σ1侧向约束下的剪切作用σ1-σ3。和b=0时相比,σ1的侧向约束要强于σ3的侧向约束,故b=1时的剪切强度参数比b=0时的大。
  4 强度准则适用性研究
  笔者曾根据粗粒土的三向加载试验得到粗粒土应力不变量强度准则和角隅函数强度准则,将这些强度准则与等q、等b试验得到的试验结果进行比较,以验证其对粗粒土三向卸载情况的适用性。
  4.1 应力不变量强度准则
  笔者曾提出应力不变量表示的粗粒土强度准则[17],如式(1)所示。
  I31+4I1I2 I3 =kf (1)
  式中:I1、I2、I3分别为第一、第二、第三应力不变量,kf为常量,与材料性质有关。
  对于粗粒土,假设凝聚力c=0,有[17]
  kf= 63-63sin φ0+5sin2φ0+3sin3φ0 1-sin φ0-sin2φ0+sin3φ0
  (2)
  式中:φ0为b=0时的内摩擦角。
  Lade和Duncan根据蒙特里砂试验结果,提出Lade-Duncan强度准则[18],表达式为
  I31 I3 =kf (3)
  式中
  kf= (3-sin φ0)3 1-sin φ0-sin2φ+sin3φ0  (4)
  Matsuoka-Nakai强度准则[19]表达式为
  I1I2 I3 =kf (5)
  式中kf= 9-sin2φ0 1-sin2φ0  (6)
   将上述3个强度准则表示成φb与b的形式,并将π平面上的形状画出,与粗粒土三向卸载的试验结果进行比较,如图3所示。粗粒土三向卸载试验结果显示,b值较小时,内摩擦角φb随着b的增大而增大;b值较大时,内摩擦角φb随着b的增大而减小。显然,3个强度准则都能反映这一规律,Matsuoka-Nakai强度准则在b值较小时与试验结果较为接近,粗粒土应力不变量强度准则在b值较大时与试验结果较为接近。
  4.2 角隅函数强度准则
  土的三维强度准则通常可用角隅函数表示为
   q p  f=Mc·g(b) (7)
  式中:Mc为b=0时的破坏应力比。
  笔者曾根据粗粒土的加载试验结果得到一个粗粒土角隅函数强度准则[20]
  g(b)= 1 (1+k)-k·(b-1)2  (8)
  式中:k是与土的性质有关的参数,可表示为[21-22]
  k=1.462sin φ0-0.523 2 (9)
   图4为粗粒土角隅函数强度准则和等q、等b试验结果,由图4可以看出,粗粒土角隅函数强度准则与等q、等b试验结果较为吻合。
  5 结论
  使用真三轴仪对粗粒土进行了等q、等b三向等量卸载试验,分析了三向卸载条件下粗粒土的强度特性,研究了常用强度准则对卸载条件粗粒土的适用性,得出以下结论:
  1)不同b的粗粒土等q、等b三向等量卸载条件下,粗粒土的强度参数与中主应力系数b有关;b=0时的内摩擦角φb最小,破坏应力比Mb最大;破坏应力比Mb随着b的增大而减小,且随着b的增大,减小的梯度在逐渐减小;内摩擦角φb在b值较小时随着b的增大而增大,在b值较大时随着b的增大而减小。
  2)三向主应力σ1、σ2、σ3共同作用下的剪切强度参数可以认为是受3个方向剪切的共同影响,进而可以解释上述内摩擦角φb随b的变化规律。
  3)Matsuoka-Nakai强度准则、粗粒土应力不变量强度准则和Lade-Duncan强度准则这3个强度准则都能反映内摩擦角φb随b的变化规律,Matsuoka-Nakai强度准则在b值较小时与试验结果较为接近,粗粒土应力不变量强度准则在b值较大时与试验结果较为接近。
  4)粗粒土角隅函数强度准则与等q、等b试验结果较为吻合。
  致谢:
  感谢江苏省高校“青蓝工程”、江苏省高校优秀中青年教师和校长境外研修计划项目资助。
   参考文献:
   [1]    卜建清, 王天亮.冻融及细粒含量对粗粒土力学性质影响的试验研究[J].岩土工程学报, 2015, 37(4): 608-614.
  BU J Q, WANG T L.Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil [J].Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614.(in Chinese)   [2]   ASGHARI  E, TOLL D G, HAERI S M.Triaxial behaviour of a cemented gravely sand, Tehran alluvium [J].Geotechnical and Geological Engineering, 2003, 21: 1-28.
  [3]   彭凯, 朱俊高, 张丹, 等.粗粒土与混凝土接触面特性单剪试验研究[J].岩石力学与工程学报, 2010, 29(9): 1893-1900.
  PENG K, ZHU J G, ZHANG D, et al.Study of mechanical behaviors of interface between coarse-grained soil and concrete by simple shear test [J].Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1893-1900.(in Chinese)
  [4]   WANG S H, DING J L, XU J, et al.Shear strength behavior of coarse-grained saline soils after freeze-thaw [J].KSCE Journal of Civil Engineering, 2019, 23(6): 2437-2452.
  [5]   黃茂松, 姚仰平, 尹振宇, 等.土的基本特性及本构关系与强度理论[J].土木工程学报, 2016, 49(7): 9-35.
  HUANG M S, YAO Y P, YIN Z Y, et al.An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils [J].China Civil Engineering Journal, 2016, 49(7): 9-35.(in Chinese)
  [6]   AOUALI N, BENESSALAH I, ARAB A, et al.Shear strength response of fibre reinforced chlef (Algeria) silty sand: laboratory study [J].Geotechnical and Geological Engineering, 2019, 37(2): 1047-1057.
  [7]   徐肖峰, 魏厚振, 孟庆山, 等.直剪剪切速率对粗粒土强度与变形特性的影响[J].岩土工程学报, 2013, 35(4): 728-733.
  XU X F, WEI H Z, MENG Q S, et al.Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests [J].Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.(in Chinese)
  [8]   CHEN A J, ZHANG J S.Strength and deformation characteristics of silty sand improved by gravel [J].KSCE Journal of Civil Engineering, 2019, 23(2): 525-533.
  [9]   ZAIMOGLU A S, YETIMOGLU T.Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers [J].Geotechnical and Geological Engineering, 2012, 30(1): 197-203.
  [10]   ASLANI M, NAZARIAFSHAR J, GANJIAN N.Experimental study on shear strength of cohesive soils reinforced with stone columns [J].Geotechnical and Geological Engineering, 2019, 37(3): 2165-2188.
  [11]   DEGANUTTI A M, TECCA P R, GENEVOIS R.The measure of friction angles for different types of granular material [J].Journal of Mountain Science, 2019, 16(4): 769-777.
  [12]   蔡建, 周健.土的卸载抗剪强度[J].岩土工程学报, 2006, 28(5): 606-610.
  CAI J, ZHOU J.Unloading shear strength of soils [J].Chinese Journal of Geotechnical Engineering, 2006, 28(5): 606-610.(in Chinese)   [13]   张玉, 何晖, 赵敏, 等.平面应变条件下原状黄土侧向卸载变形与强度特性分析[J].岩土力学, 2017, 38(5): 1233-1242, 1250.
  ZHANG Y, HE H, ZHAO M, et al.Analysis of lateral unloading deformation and strength characteristics of intact loess under plain strain condition [J].Rock and Soil Mechanics, 2017, 38(5): 1233-1242, 1250.(in Chinese)
  [14]   何世秀, 龙立华, 杨雪强, 等.黏性土卸载屈服特性试验研究[J].岩土力学, 2018, 29(Sup): 449-452.
  HE S X, LONG L H, YANG X Q, et al.Experimental study of yield property of clayey soil under unloading [J].Rock and Soil Mechanics, 2018, 29(Sup): 449-452.(in Chinese)
  [15]   王大雁, 马巍, 常小晓.K0固结后卸载状态下冻土应力 应变特性研究[J].岩石力学与工程学报, 2004, 23(8): 1252-1256.
  WANG D Y, MA W, CHANG X X.Study on behavior of stress-strain for frozen soils subjected to K0 consolidation by unloading triaxial shear tests [J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1252-1256.(in Chinese)
  [16]   李加贵, 陈正汉, 黄雪峰, 等.Q3黄土侧向卸荷时的细观结构演化及强度特性[J].岩土力学, 2010, 31(4): 1084-1091.
  LI JG, CHEN Z H, HUANG X F, et al.CT-triaxial shear tests on the meso-structure evolution and strength of unsaturated loess Q3 during unloading confining pressure [J].Rock and Soil Mechanics, 2010, 31(4): 1084-1091.(in Chinese)
  [17]   施维成,朱俊高,刘汉龙.中主应力对砾石料变形和强度的影响[J].岩土工程学报, 2008, 30(10): 1449-1453.
  SHI W C, ZHU J G, LIU H L.Influence of intermediate principal stress on deformation and strength of gravel [J].Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449-1453.(in Chinese)
  [18]   LADE P V, DUNCAN J M.Elastoplastic stress-strain theory for cohesionless soil [J].Journal of the Geotechnical Engineering Division, 1975, 101(GT10): 1037-1053.
  [19]   TERUO N K, MATSUOKA H, OKUNO N, et al.True triaxial tests on normally consolidated clay and analysis of the observed shear behavior using elastoplastic constitutive models [J].Soils and Foundations, 1986, 26(4): 67-78.
  [20]   SHI W C, ZHU J G, CHIU C F, et al.Strength and deformation behaviour of coarse-grained soil by true triaxial tests [J].Journal of Central South University of Technology, 2010, 17(5): 1095-1102.
  [21]   施维成, 朱俊高, 张博, 等.粗粒土在平面应变条件下的强度特性研究[J].岩土工程学报, 2011, 33(12): 1974-1979.
  SHI W C, ZHU J G, ZHANG B, et al.Strength characteristics of coarse-grained soil under plane strain condition [J].Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1974-1979.(in Chinese)
  [22]   施维成, 朱俊高, 代国忠, 等.三向应力状态下粗粒土的强度准则研究[J].重庆交通大学学报(自然科学版), 2017, 36(1): 64-67, 116.
  SHI W C, ZHU J G, DAI G Z, et al.Study on failure criterion of coarse-grained soil in three-dimensional stress state [J].Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(1): 64-67, 116.(in Chinese)
   (編辑 王秀玲)
   收稿日期:2019-07-18
  基金项目:  国家自然科学基金 (51678083);常州市科技支撑计划(CE20195034)
  作者简介:  施维成(1982- ),男,博士,教授,主要从事土的基本性质研究,E-mail: shiweicheng1982@163.com。
  Received: 2019-07-18
  Foundation items:  National Natural Science Foundation of China (No. 51678083); Changzhou Science and Technology Support Program (No. CE20195034)
  Author brief:  Shi Weicheng (1982- ), PhD, professor, main research interest: basic properties of soil, E-mail: shiweicheng1982@163.com.
转载注明来源:https://www.xzbu.com/8/view-15203623.htm

相关文章

服务推荐